authors express the length of the wave vector to the Fermi surface by:

$$k = k_0 [1 + AY_4(\theta, \phi) + A_1Y_6(\theta, \phi)]$$
 (IV-1)

The Kubic harmonics $Y_4(\theta,\phi)$ and $Y_6(\theta,\phi)$ are combinations of spherical harmonics having cubic symmetry; they are given by [4]

$$Y_4(0,\phi) = 5/2 [x^4 + y^4 + z^4 - 3/5]$$
 (IV-2)

and

$$Y_6(\theta, \phi) = 231/2 \left[x^2 y^2 z^2 - Y_4(\theta, \phi)/55 - 1/105 \right]$$
 (IV-3)

where $x = \sin \theta \cos \phi$, $y = \sin \theta \sin \phi$ and $z = \cos \theta$. In the principal directions the values of the Kubic harmonics are:

$$Y_4(100) = 1$$
 $Y_4(110) = -1/4$ $Y_4(111) = -2/3$ $Y_6(100) = 1$ $Y_6(110) = -13/8$ $Y_6(111) = 16/9$.

Similarly they write

$$\left(\frac{\partial \mathbf{k}}{\partial \mathbf{E}}\right)_{\mathbf{E}_{\mathbf{F}}} = \mathbf{k}_{0} \left[1 + \mathbf{B} \mathbf{Y}_{4}(\theta, \phi) + \mathbf{B}_{1} \mathbf{Y}_{6}(\theta, \phi)\right]; \tag{IV-4}$$

the derivative is taken at the Fermi energy $\mathbf{E}_{\mathbf{F}}$. The scattering time is also expanded in Kubic harmonics;

$$\tau = \tau_0 [1 + CY_4(\theta, \phi) + C_1Y_6(\theta, \phi)]$$
 (IV-5)

The expression for n* may be obtained from Eq. (8) of Ref. [3]:

$$n^* = 1 + 4/21 [9 A^2 - 18 A (C - B) - (C - B)^2]$$

+ $8/13 [20 A_1^2 - 40 A_1(C_1 - B_1) - (C_1 - B_1)^2]$

(IV-6)

The expression is correct to second-order in the coefficients of Y_4 and Y_6 . We note that the value of n depends on the anisotropy of the scattering time, but not on its magnitude. As we expect, n = 1 for spherical surfaces

HP6 -44-

and isotropic scattering times. Furthermore, we see that the terms in AC and A_1C_1 can give a decrease of n^* as the warping, (|A| and $|A_1|$), increases, provided A, A_1 , C, and C_1 have the proper sign. Once an anisotropic scattering time is introduced, increased warping of the Fermi surface does not necessarily increase n^* .

The expression of the warping in this manner has introduced two more coefficients, B and B_1 , which did not appear when the energy was expanded in Kubic harmonics as in Eq. (I-4). However, B and B_1 are not independent of A and A_1 . In Appendix 1 we derive the relations between B, B_1 and A, A_1 on the assumption that the warping is small.

B. Calculation of the Warping Parameters

We obtained the warping parameters A and A_1 from the computations of Ham [5] for the alkali metals. Ham's data give electron energy vs. $ka/2\pi$, where a is the lattice constant, for the 100, 110 and 111 directions. If the Fermi energy is known, we can use these curves to obtain the length of the k vector at the Fermi surface for the three principal directions. Equation (IV-1) can then be used to obtain three equations, from which k_0 , A and A_1 can be computed.

The Fermi level can be obtained by a simple procedure. The Fermi surface must enclose a volume in k space which contains all the electronic states of the valence electrons. The density of states in k space per unit volume of crystal is $1/4 \, \pi^3$ and a b.c. c. crystal with lattice constant a and one valence electron/atom has $2/a^3$ valence electrons/unit volume. For a spherical Fermi surface the radius, k_s , is given by

$$\frac{1}{4\pi^3} k_s^3 4\pi/3 = 2/a^3$$
 (IV-7)

or

$$ak_{s}/2\pi = .62 (IV-8)$$